Stochastic Process

Stochastic Process course note.

1. stochastic process

1.1. classes of process

  • Def: stochastic process

    Note:

1.1.1. stationary

  • Def: stationary process

    Note:

  • Def: broad stationary process

    Note:

1.1.2. ergodic

  • Intro:

    Def: ergodic process

    Note:

    • Qua: necc & suff

    • Qua: equation =>

    • Qua: equation =>

    • Qua: necc &suff for variance function

1.1.3. independent increment

  • Def:independent increment process

    Note:

1.1.4. markov

  • Def: markov

    Note:

    Note:

    Note:

1.1.4.1. inhomogeneous markov

  • Def: inhomogeneous markov

  • Def: trans prob \(p _{ij}\)

  • Def: n trans prob \(p_{ij}^{n}\)

    • Theorem: relationship with pij

    • Theorem: relationship with fij

  • Def: prob matrix

1.1.4.2. reducible markov

  • Def: reducible markov

  • Def: property of status: same class

    Note:

    • Qua: necc & suff

  • Def: property of status: circular

    Note:

    • Qua: same status=>

  • Def: property of status: Recurrence

    Note:

    • Def:

    • Qua: necc & suff

    • Qua; => fji

    • Qua:

    • Theorem: =>decomposition

    • Theorem: => decomposition 2

1.1.4.3. limit markov

  • Def: limit markov

  • Theorem:

    Note:

    • Corollary:

  • Theorem:

    • Corollary:

    • Corollary:

  • Theorem:

    • Corollary:

  • Lemma:

    Theorem:

    • Corollary:

      Note;

1.1.4.4. unchanged markov

  • Def: unchanged markov

    • Theorem: => relationship

  • Def: large number p109

1.1.4.5. continuous markov

  • Def: continuous markov

    Note:

    • Qua: => distribution

      Note:

  • Def: regularized markov

  • Theorem:

  • Theorem:

  • Theorem:

    • Corollary:

      Note:

  • Theorem:

  • Def: the final

1.1.4.6. strong markov

  • Def: time stop

    Note:

  • Def: strong markov

1.1.4.7. examples: population

1.1.5. Levy

  • Def

  • Def:

  • Def:

  • Def;

  • Def:

  • Def:

  • Def;

  • Def:

  • Theorem:

1.2. distribution

  • Def: finite joint distribution

    • Qua: => some qualities

    • Qua: kolmogov => exist

      Note:

1.3. special function

1.3.1. expectation

  • Def: expectation & 2 moment process

    • Qua: => that co-var & autocorrelation exist

1.3.2. variance

  • Def: variance

1.3.3. co-variance

  • Def: co-variance

1.3.4. autocorrelation

  • Def: autocorrelation

1.4. integration

  • Def:

    • Qua: =>

  • Def:

1.4.1. It integral

  • Def:

    • Theorem:

      • Corollary:

    • Theorem:

  • Def:

    • Theorem:

1.4.2. It process

  • Theorem:

  • Theorem:

  • Def:

  • Theorem:

2. useful processes

2.1. poisson

  • Def: counting process

  • Def: poisson process

    Note:

    • Qua: necc & suff

    • Qua: necc & suff

    • Qua: Xn distribution =>

      Note:

    • Qua: tn distribution =>

    • Qua: tn conditional distribution =>

2.1.1. inhomogeneous poisson

  • Def; inhomogeneous possion

    • Qua: necc & suff

    • Qua: transition with normal =>

      Note:

2.1.2. complex poisson

  • Def: complex poisson

    Note:

    • Qua: => property

2.1.3. condition poisson

  • Def; condition poisson

    Note:

    • Qua; => e & var

2.2. brown

  • Def:

    • Qua: necc & suff

      Note:

  • Def: inhomo brown

  • Def:

    • Qua: =>

    • Qua: =>

2.2.1. martingale

  • Theorem:

    Note:

2.2.2. markov

  • Theorem:

  • Def:

  • Theorem: strong markov

2.2.3. maximum

  • Def:

2.2.4. generlization

2.2.4.1. brown bridge

  • Def:

2.2.4.2. efficient absorb brown

p173

2.2.4.3. reflected brown

  • Def:

2.2.4.4. geometry brown

  • Def:

2.2.4.5. shifted brown

p 180

2.3. Gauss

  • Def: gauss process

3. relationship of stochastic process

## special function

3.0.1. cross-covariance

  • Def: cross-covariance

3.1. correlation

  • Def: correlation

Title:Stochastic Process

Author:Benson

PTime:2019/11/19 - 12:11

LUpdate:2020/04/03 - 21:04

Link:https://steinsgate9.github.io/2019/11/19/stochastic-process/

Protocal: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Please keep the original link and author.