Mathematical Analysis

Mathematical Analysis Course Slides Notes

1. real number set

1.1. real number

  • Def: real number

    • Qua: real number basic quality

    • Qua: => real number absolute quality

  • Def:complex number

    • Qua: =>

    • Def: complex conjugate

    • Def: absolute value

      • Qua: operation

1.2. range & neibor & bound of set

  • Def: range & neibor of set

  • Def: exact bound of set

    • Qua: => exact bound

2. function

2.1. one variable function

  • Def: function

    Note:

  • Def: bound & function

  • Def: mono function

    • Theorm: mono => inverse mono
  • Def: odd & function

  • Def: periodic & function

2.1.1. limit

2.1.1.1. limit

  • Def: limit of function to inf

    Fig:

  • Def: limit of function to number

    Fig:

    • Qua: 2 other functions larger & smaller => liim

    • Qua: ~ => liim

    • Qua: array => liim

      Note:

    • Qua: f => liim

    • Example:

    • Example2

    • Qua: liim => only one

    • Qua: liim => bounded within a small range

    • Qua: liim => sign not change within a small range

    • Qua: liim => keep order within a small range

    • Qua: operation

  • Def: half way limit to number

    • Qua: mono => lim

    • Qua: mono => lim

2.1.1.2. O & o

  • Def: inf small

    • Qua: operation
  • Def: o

  • Def: --

  • Def: O

  • Def: ~

2.1.2. continuous

2.1.2.1. continuous

  • Def: continuous at one point

    1. continuous = limit exist + (limit = value)

    1. def2

    1. def3

    • Qua: func => conti

    • Qua: func => conti

    • Qua: limit & continuous

      Usage: (1) conti => limit

      ​ (2) limit do not require x0, conti does

      ​ (3) f and limit can exchange order

    • Qua: conti => keep range

    • Qua: conti => keep sign within range

  • Def: left/right continuous

    • Qua: suff & necc

  • Def: break point

    • Def: can be wiped break point (no def)

    • Def: jump break point (no lim)

    • Def: second break point (have def & lim but not equal)

2.1.2.2. continous function

  • Def: continuous function

    • Qua: conti => max/min

    • Qua: conti => f(x) = k

    • Qua: conti => inverse conti

  • Def: uniform continuous

    Why: some conti func is too steep, like 1/x.

    Note: Conti = choose a sigma(x, e) to make the gap < e

    ​ U-Conti = choose a sigma(e) to make the gap < e

    • Qua: suff

  • Def: several range continuous

2.1.3. derivation

2.1.3.1. def

  • Def: derivation

    • Qua: suff and necc

    • Qua: derble => some equation

    • Qua: derble => conti

  • Def: left/right der

  • Def: second order der

2.1.3.2. der function

  • Def: der function

    Fig:

    • Qua: => der = k

    • Qua: => der = 0

    • Qua: => der = 0(k)

    • Qua: => der = g(x)

    • Qua: => der = c

    • Qua: mono => der >=0

    • Qua: => der = c

    • Qua: => liim der = c

    • Qua: operation

  • Def: max/ min

    image-20191010194459001

    • Qua: => min/max

    • Qua: => min/max

    • Qua: => min/max

2.1.3.3. differential

  • Def: differential

    • Qua: derible + (A=f') = diffble

    • Qua: 恒成立的等式

    • Qua: operation(ddx=0 from deltadeltax = 0)( 可微情况下 dx = deltax)

  • Def: high order diff

2.1.3.4. taylor expansion

  • Def:

    • Qua: => taylor

    • Qua: => taylor

    • Qua: => taylor

    • Qua: => taylor

2.1.4. Riemann integration

  • Def:origin

  • Qua: conti => origin

  • Qua: operation

2.1.4.1. non fixed integration

  • Def: not fixed integration

    • Qua: => integration

    • Qua: => integration

    • Qua: devotion => integration

    • Qua: sin => integration

    • Qua: => integration

    • Qua: operation

2.1.4.2. fixed integration

  • Def:

    Note:

    Fig

    • Qua: => integration

      Note:

    • Qua: => integration

    • Qua: => integration

    • Qua: => integration

    • Qua: => integration

2.1.4.2.1. integratable on [a,b]
  • Def: integratable on [a,b]

    • Qua: => intble

    • Qua: => intble

    • Qua: => intble

    • Qua: => intble

    • Qua: => intble

    • Qua: intble => bounded

    • Qua: intble =>

    • Qua: intble =>

    • Qua: intble =>

    • Qua: intble =>

    • Qua: operation

2.1.4.3. abnormal integration

  • Def: inf abnormal

    Note:

    Fig:

    • Qua: suff & necc of convergence

    • Qua: => convergecy

    • Qua: => convergency

    • Qua: operation

  • Def: break point abnormal integration

    Note:

    • Qua: suff & necc

    • Qua: operation

      image-20191010212341115

2.2. multi variable function

2.2.1. limit

2.2.2. continuous

2.2.3. derivation

1 to 1 textbook

1 to X/M https://blog.csdn.net/weixin_38278334/article/details/83028794

X/M to X/M https://zhuanlan.zhihu.com/p/24863977 here is to mention that, the definition of 1 to X/M is different from X/M, we are more inclined to refer 1 to X/M as \(\triangle\), and the other as derivatives.

2.2.4. hidden variable

2.2.5. integration

2.2.5.1. parameter nomral integration

  • Def:

    • Qua: => conti

    • Qua: => diffble

    • Qua: => intble

    • Qua: => order changeble

2.2.5.2. parameter abnomral integration

2.2.5.2.1. def
  • Def:

  • Def: uniform convergency

    • Qua: suff & necc

    • Qua: => converge

    • Qua: converge => conti

    • Qua: converge => exchange order(conti)

    • Qua: converge => diffble

    • Qua: converge => intble

2.2.5.2.2. gamma & beta integration
  • Def: gamma

    Fig:

    • Qua: gamma => diffble & conti

    • Qua: gamma => equation

    • Qua: gamma => tranform

  • Def: Beta

    • Qua: beta => conti

    • Qua: beta => equatiom

    • Qua: beta => transform

  • Qua: beta & gamma

2.2.5.3. curve integration

  • Def: first curve integration

    Fig:

    • Qua: => integration

    • Qua: intble =>

    • Qua: intble => 路线无关性

  • Def: second curve integration

    Note:

    • Qua: => integration

    • Qua: operation

2.2.5.4. muliple integrate

  • Def:

    • Qua: suff & neck

  • Def: multi integration

    Note:

    • Qua: suff & necc

    • Qua: => intble

    • Qua: intble =>

    • Qua: => integration

    • Qua:Green, => integration

    • Qua: operation

3. array or series

3.1. number array/series

12

3.2. function array/series

3.2.1. function array

  • Def: function array

3.2.1.1. convergence

  • Def:

3.2.1.2. uni convergence

  • Def:

    Note: visualization & why it's important

    • Qua:caughy =>

      Note: same thing

      • Corollary:

3.2.1.3. f induced by function array

3.2.1.3.1. limit
  • Def: limit

    Note; limit & limit exchange

3.2.1.3.2. continuous
  • Def: continuous

3.2.1.3.3. derivation
  • Def: derivable

    Note: limit & deri exchange

3.2.1.3.4. Riemann integration
  • Def : integrable

    Note: limit & intg exchange

3.2.2. function series

  • Def:

3.2.2.1. convergence

  • Def:

3.2.2.2. uni convergence

  • Def:

    • Qua: necc & suff

      Note: same thing

    • Qua: some =>

    • Qua: some =>

    • Qua: some =>

3.2.2.3. f induced by function series

3.2.2.3.1. continuous
  • Def:

    Note: sum & limit

3.2.2.3.2. derivation
  • Def:

    Note: sum & deri

3.2.2.3.3. Riemann integration
  • Def:

    Note: sum & intg

3.2.3. power series

  • Def:

3.2.3.1. convergence

  • Def:

    • Qua:abel =>

      Note:

    • Qua: =>

      Note: same thing

3.2.3.2. uni convergence

  • Def:

    • Qua: =>

    • Qua: =>

    • Qua:

3.2.3.3. f induced by power series

3.2.3.3.1. continuous
  • Def: continuous

3.2.3.3.2. deri & integral
  • Def:

    • Corollary:

3.2.3.4. computation of coefficient

  • Def: equavalence

  • Theorem: operation

3.2.3.5. taylor series

  • Def: taylor series

    Usage: expansion without Rn

  • Def: generated by taylor series

    Usage: when f = taylor series

    • Qua: same => exist

    • Qua: => uniqueness

3.2.4. fourier series

  • Def: tri series

    • Qua: convergence

  • Def: fourier series

    Note:

    • Qua: =>

3.2.4.1. convergence

  • Def: smooth

    • Qua;

  • Def: convergence

    • Qua:

    • Qua: 2 \(\pi\) -> 2l

    • Qua: single / not

Title:Mathematical Analysis

Author:Benson

PTime:2019/11/19 - 12:11

LUpdate:2020/04/03 - 21:04

Link:https://steinsgate9.github.io/2019/11/19/Math_analysis/

Protocal: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Please keep the original link and author.