Linear Algebra

Linear Algebra Course Slides Notes

1. space

  • Note: figure of different spaces

  • Note: brief intro to various spaces

1.1. vector space (linear space)

  • Def: vector space ( V on F )

    Note:

    Example:

    • Qua: => qualities

    • Qua: => only one adding element

    • Qua: => only one adding invert

    • Qua: =>0v=0

    • Qua: => ao=0

    • Qua: => (-1)v = -v

1.1.1. subspace & sum (直和)

1.1.1.1. subspace

  • Def: subspace

    • Qua: 3 conditions =>

      Note:

    • Qua: => finite

    • Qua: => dimension

    • Qua: => dimension

1.1.1.2. sum

  • Def: sum

  • Def: direct sum

    • Qua: necc & suff (multiple)

    • Qua: necc & suff (2 subspace)

    • Qua: finite =>

    • Qua: dimentiosn =>

1.1.2. linear combination & span

1.1.2.1. linear combination

  • Def: linear combination

    • Qua: necc & suff

    • Qua: necc & duff

      • Corollary:

    • Qua: necc & suff

    • Qua: => rank

1.1.2.2. span

  • Def: span

    • Def: be spanned by

1.1.2.3. linear independent

  • Def: linear independent

    • Theorm: necc & suff of dependent

    • Theorm: rank =>

    • Lemma : => span

    • Theorm: => length

  • Def: largest indepent group

1.1.3. basis

  • Def: basis

    • Qua: necc & suff

    • Qua: every spanned group =>

  • Corollary: every finite space =>

    • Qua: every independent =>

  • Qua: every length spanned group =>

  • Qua: every length independent =>

  • Def: dimension

    • Qua: finite =>

    • Theorm: for map-space dimension =>

    • Theorm: subspace dim =>

      • Corollary: => no dandi

      • Corollary: => no mandi

      • Corollary: => no solution

  • Theorm: => relationship with matrix rank

1.1.3.1. othonomal basis

  • Def: othonomal

    • Qua: => independent

  • Def: othonomal basis

    • Qua: Gram-Schmdt convert to otho =>

      Algorithm:

      adjoint

    • Qua: => xxx

1.2. metric space

  • Def: distance space

1.2.1. separable

  • Def: separable

    • Lemma: separa => Borel = Borel0

  • Def: Borel set

    • Def: Borel 0 set

  • Def: measurable map

    • Qua: necc & suff

  • Def: projection map

    Note

  • Def: RCLL function

    Note:

  • Qua: some statements

1.3. inner product space

1.3.1. inner product

  • Def: inner product:The inner product operator measures the similarity between vectors

    Example: very important, we see f, g as very long vectors(infinite), and <f, g> is basiclly the sum of infinite vectors.

    Example: very important example here, fourier function

    define infinite basis functions

    prove that basis function are orthogonal

    any f can be written as linear combination of basis functions (proof: using orthogonal)

    compute coefficient : use orthogonal

    • Qua: necc & suff

    • Qua: => quality

    • Qua: => quality

  • Def: orthogonal

1.3.2. norm

  • Def: norm

  • Def: norm

    • Qua: necc & suff

    • Theorm: => Cauchy-Schwarz Inqueality

    • Theorm: Triangle inequality

    • Theorm: Parallelogram inequality

    • Theorm: Pythangorean

1.3.3. inner product space

  • Def: inner product space

    Example:

    • Qua: => T=0

    • Qua: => continuous

1.3.4. orthogonal complement

  • Def: orthogonal complement

    • Qua: => V=a+b

      • Corollary: => invertable

  • Def: orthogonal projection

    • Qua: => qualities

    • Qua: => norms

1.3.5. linear functional & adjoint

  • Def: linaer funcitonal

    • Qua: =>

  • Def: adjoint

    • Qua: =>

    • Qua: =>

    • Qua: =>??

1.3.6. self-adjoint function & normal function

  • Def: self-adjoint function

    • Qua: necc & suff

    • Qua: => egenvalue

    • Qua: => T = 0

  • Def: normal function

    • Qua: necc & suff

    • Qua: => egenvalue

    • Corollary:

1.3.6.1. complex space

  • Theorm: complex spectral theorm, necc & duff

- Corollary: => invertible

![](https://tva1.sinaimg.cn/large/006y8mN6ly1g96vbl0bl9j31240ammzc.jpg)
  • Corollary: => egvalue

1.3.6.2. real space

  • Theorm: real special thoemr, necc & suff

    • Qua: => direct sum

  • Theorm: necc & duff of [norm but not self]

  • Theorm: necc & suff of norm

  • Theorm: necc & suff of norm

1.3.6.3. positive function

  • Def:positive function

    • Theorm: necc & suff

    • Theorm: => root

  • Def: square root

1.3.6.4. isometry function

  • Def: isometry

    • Qua: necc & suff

    • Qua: necc & suff

    • Qua: necc & suff

    • Theorm: polar decomposition

  • Def: singular value

    image-20191122215140189

    • Theorm: => singular value decomposition

1.4. hilbert space

  • Def: hilbert space

    • Def: complete space

    Example: of hibert space

1.4.1. kernel (1-8 & web)

  • Def: kernel (1-8)

  • Def: kernel (web)

    Example:

  • Def: kernel

    defiinition 3: web

    Example: of \(\phi\)

    • Qua: => quality of kernels

      Proof:

    • Operation: (1-9), below are all kernels.

    • Operation: (web)

1.4.2. reproducing kernel hilbert space (1-8 & web)

  • Def: reproducing kernel hilbert space ( web )

    rkhp is a hilbert space with reproducing property, which the basis eigen function form the basis of it . Given kernel function-X space, we can get eigen basis-rkhp( - means that it is one on one); it may be confusing that hilbert space can be function space / vector space , but here we only consider function space.

  • Theorem: Mercer theorem(web), kernel related to X space, eigenfunc/vec related to L(x) function space. kernel function can be expressed in combinition of eigen functions.

    Proof:

    from eigen value, get the following (see K(x,y) as infinite matrix, x implies column, y is row.

    prove orthogonal, them we can use eigen decomp to prove the theorem.

  • Def: reproducing property (web)

    for this type of inner product, we have reproducing property

    Proof:

    present f as combinition of eig functions

    s
    s

    from mercy theorem, we get (there should be a T at the end)

    therefore, from definition, we get

  • Def: kernel trick( web)

    now that we have get kernel-X and eigen function-rkhp, we define a rkhp-mapping: \(\phi(x)\) is a function X-> H, K(x, .) may seem confusing but it is a function from X-> H as well, the dot means that the place

    then we get

    Example: in this example, \(\phi(x)\) is the coordinate of feature space(which is a function hilbert space), there should be a H at the end of \((x1, x2, x1x2)^{T}_{H}\); the function space basis functions are:\(\psi _{1}(.) = e1(.)\), \(\psi _{2}(.)=e1(.)\) , \(\psi3(.)=e1(.)*e2(.)\), but we do not need to know the exact hilbert space it is projected to in most cases.

  • Def: reproducing kernel hilbert space (1-8)

    this is the same. rkhs is here have to be a function space(X->R), which every element satisfy reproducing property.

  • Def: reproducing kernel hilbert space (1-8)

    same thing .

  • Def: kernel trick (1-8)

    kernel(x, y) = <\(\phi(x)\), \(\phi(y)\) >, very important stuff here!!

    Proof:

    the thing here is different from web version. we change hilbert space basis function to k(., xi), \(i=1...n\), I imagine that this is merely a change of basis. \(\phi(x):X\to R ^{X}( R^X\text{ means function from X to R} )\)

  • Theorem: Mercer theorem(1-8)

    Usage: we can get something more from this version. we can approximate \(\phi\) by a finite dimensional map.

    Proof: none

    Note: 这个是mercy定理的直观证明:

    Example: SVM

1.4.3. representing therom (1-9)

  • Theorm: representer, which shows that even in an infinite dimensional reproducing kernel Hilbert space, the minimizer f∗ can be repre- sented as an (at most) n-dimensional linear combination of kernel functions.

    Usage: We can generalize this and prove a simple but powerful theorem called the “Representer Theorem,” which shows that even in an infinite dimensional reproducing kernel Hilbert space, the minimizer f∗ can be repre- sented as an (at most) n-dimensional linear combination of kernel functions.

    Proof:

  • Def: translation-invariant kernel

    Example: fourier expansion, we define a invariant k(x), then we see what the original kernel is.

1.5. measure space

see measure theory

1.5.1. L2 space

  • Def: L2 space (2-4) function space

1.5.2. Lp space

  • Def: Lp function space

2. linear map

  • Def: linear map

    2

    • Qua: => qualities

    • Qua: => dimension

  • Def: injective, (单射,两个变量不能得到同一个结果)

  • Def: surjective , (漫射,值域被完全覆盖)

  • Def: orthotal map

2.1. null space & range

2.1.1. null space

  • Def: null space

    • Qua: necc & suff

    • Qua: => subspace

2.1.2. range space

  • Def: range space

    • Qua: => subspace

2.2. matrix

2.2.1. matrix properties

2.2.1.1. basic

  • Def: from V(n) -> W(m) = m x n

    • Def: matrix of particular vector (坐标)

    • Qua: 变基 =〉 基与基的关系

    • Qua: 变基 =》坐标与坐标的关系

    • Theorm: 变换 =》 坐标与坐标的关系

    • Theorm: 变换 + 换基 =》坐标与坐标的关系

    • Qua: 变换+变基 =》 各种矩阵的关系

    • Qua: operation

2.2.1.2. invertible

  • Def: invertible

    • Qua: necc & suff

    • Qua: necc & suff

    • Qua: necc & suff

    • Qua: => only one

    • Qua: special =>

    • Def: isnorphic

      • Def: necc & suff

    • Qua: operation

2.2.1.3. change of basis

  • Theorm: change from u to v (with in V) =>

  • Theorm: change from u to v (with in V)=>

2.2.1.4. trace

  • Def: trace of function

    • Qua: => sum of egvalue

    • Theorm: trace of function = trace of matrix

      • Corollary:

    • Qua: operation

      • Corollary:

2.2.1.5. determinant

  • Def: d of function

    d of matrix

    • Qua: => inver

    • Qua: => same

    • Lemma:

    • Theorm: => p(T)

    • Theorm: Karamo => equation

      • Corollary

    • Qua: operation

      • Corollary

      • Corollary

2.2.1.6. rank

  • Def: k

  • Def: rank

    • Theorm: rank = rank

    • Qua: => AX=0

    • Qua: => AX=bequatins

    • Qua: operations

2.2.2. relationships between matrix

2.2.2.1. equivalent

  • Def: variations

  • Def: equivalence

    • Qua: necc & suff

      • Corollary

    • Qua: => rank

2.2.2.2. similar

  • Def: similar

    • Theorm: necc & suff of similar to diag

    • Qua: => same egvalue

2.2.2.3. congruent

  • Def: 二次型 & 标准型

    • Theorm: same way=>

    • Theorm: => xxx

  • Def: congruent

2.2.3. special matrix

2.2.3.1. positive definite matrix

  • Def: positive

    • Qua: necc & suff

2.2.3.2. orthogonal matrix

  • Def: orthogonal matrix

    • Qua: necc & suff

      (wiki)

    • Qua: =>

2.2.3.3. symmetric matrix

  • Theorm: => egvalue

  • Theorm: => ortho

  • Theorm: => decomposition

    • Corollary

      Algorithm

2.3. eigenvalue

2.3.1. eigenvalue

  • Def: invariant

  • Def: eigenvalue (就是寻找1维不变子空间,一个子空间对应一个eigvector和valu

    • Qua: necc & suff

    • Qua: => same matrix and function

    • Qua: => independent

      • Corollary:

    • Qua: => every one has

    • Qua: operation

2.3.2. upper matrix

  • Def:...

    • Theorm: necc & duff

    • Theorm: => inverisible

    • Theorm: => eigvalue

    • Theorm: => otho basis

    • Theorm: some basis =>

2.3.3. diagonal matrix

  • Def:...

    • Qua: necc & suff

    • Qua: necc & suff

    • Qua: necc & suff

2.3.4. same egenvalue

2.3.4.1. generalized egvalue

  • Def: generalized egvalue

  • Theorm: about null space

  • Theorm: about null space

    • Corollary : egvalue =>

  • Theorm: about range space

  • Def: nilpotent

    • Qua: =>

2.3.4.2. characteristic polynomial

  • Theorm: important!

  • Def: multiplicity

    • Theorm: => sum

  • Def: characteristic polynomial qt

    • Theorm: => qt= 0

2.3.4.3. decomposition

  • Theorm:

  • Theorm: princliple structure decomposition

    • Corollary:

  • Lemma:

  • Theorm: important

  • square root ( application of 2.4.7.1)

  • Lemma:

  • Theorm: inver => square root

2.3.4.4. minimal polynomial

  • Def:

  • Theorm: => 包含q(T)

  • Theorm: => egvalue (和特征多相似根相同,但是重数不同;特征多项式重根数对应特征值重数,极小多项式对应最大jordan块的介数)(所以我们可以认为一个特征值重数= 特征多项式重数 = jordan块 + jordan块 ,其中最大Jordan块介数 = 极小多项式重数)

2.3.4.5. jordan basis

  • Lemma

  • Def: jordan basis

    • Theorm: any =>

2.3.5. real vector space

2.3.5.1. basic

  • Theorm:

  • Theorm:

2.3.5.2. block upper matrix

  • Def:

    • Theorm:

2.3.5.3. pt

  • Theorm:

  • Def: multiplicity

    • Theorm:

2.3.6. eigen decomposition (web)

  • Def: eigen decomposition

    x1, x2 are orthogonal

    decomposition, no proof

3. polynomial

  • Def: 多项式

3.1. root

  • Def: 次数

  • Def: root

    • Qua: necc & suff

    • Qua: => number of roots

      • Corollary:

  • Theorm: division algorithm

3.2. complex coefficient

  • Theorm: fundamental theorm of algebra

    • Corollary:

3.3. real coefficient

  • Theorm: => root

  • Lemma: to prove the below

  • Theorm: 分解定理

3.4. multi linear function

  • Def: 多项式算子

Title:Linear Algebra

Author:Benson

PTime:2019/11/19 - 12:11

LUpdate:2020/04/03 - 21:04

Link:https://steinsgate9.github.io/2019/11/19/Linear_Algebra/

Protocal: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Please keep the original link and author.